Cantharidin-loaded functional mesoporous titanium peroxide nanoparticles for non-small cell lung cancer targeted chemotherapy combined with high effective photodynamic therapy

载斑蝥素功能介孔过氧化钛纳米粒子用于非小细胞肺癌靶向化疗联合高效光动力治疗

阅读:6
作者:Kun Zheng, Runze Chen, Yanxue Sun, Zhenquan Tan, Ye Liu, Xiao Cheng, Junke Leng, Zhaoming Guo, Pengcheng Xu

Background

Although photodynamic therapy (PDT) has emerged as a potential alternative to conventional chemotherapy, the low reactive oxygen species (ROS) yield of the photosensitizer such as TiO2 nanoparticles has limited its application. In addition, it is difficult to achieve effective tumor treatment with a single tumor therapy.

Conclusions

YSA-PEG-TiOX nanoparticles could significantly increase ROS production under X-ray exposure and provide a new drug delivery nanocarrier for CTD in combination with PDT to achieve effective NSCLC treatment.

Methods

We used TiOx nanocomposite (YSA-PEG-TiOX ) instead of TiO2 as a photosensitizer to solve the problem of insufficient ROS generation in PDT. Benefiting from the desired mesoporous structure of TiOx, Cantharidin (CTD), one of the active components of mylabris, is loaded into TiOx for targeted combination of chemotherapy and PDT. The cellular uptake in human non-small cell lung carcinoma cell line (A549) and human normal breast cell line (MCF 10A) was evaluated by confocal microscopy. in vitro cytotoxicity was evaluated using Cell Counting Kit-8 assay. The ROS was detected via a chemical probe DCFH-DA and the photodynamic treatment effect of YSA-PEG-TiOx was further evaluated by a living-dead staining. The cell apoptosis was detected by the flow cytometry.

Results

Our findings showed that the modification of YSA peptide improved the cytotoxicity of YSA-PEG-TiOX /CTD to EphA2 overexpressing A549 non-small cell lung cancer (NSCLC) than non-YSA modified counterparts. In addition, TiOx generated adequate ROS under X-ray irradiation to further kill cancer cells. Flow analysis results also proved the superiority of this combined treatment. Conclusions: YSA-PEG-TiOX nanoparticles could significantly increase ROS production under X-ray exposure and provide a new drug delivery nanocarrier for CTD in combination with PDT to achieve effective NSCLC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。