Integrated analysis of metabolome in a EUS-FNA sample with transcriptome in the TCGA cohort of pancreatic head and body/tail adenocarcinoma

EUS-FNA 样本代谢组与 TCGA 胰腺头和体/尾腺癌队列转录组的综合分析

阅读:8
作者:Chen Ke, Liu Yuan, Yang Xiujiang, Shen Danjie

Abstract

Metabolome profiles are largely unknown for pancreatic head cancers, in which the predominant anatomical feature is the exosure of bile, pancreatic juice, and duodenal juice. In this research, 30 head and 30 body/tail cytological samples acquired by endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) of pancreatic adenocarcinoma were delivered for liquid chromatography coupled with mass spectrometry (LC-MS). Transcriptome analysis was performed using the sequencing data from The Cancer Genome Atlas (TCGA) cohort. LC-MS obtained 4,857 features in EUS-FNA cytological samples, and 586 metabolites were certified. Among them, 30 differential metabolites were identified. In the TCGA cohort, 247 differential metabolism genes were selected from 1,583 differential genes. The integrated analysis identified the top three enriched metabolic pathways as follows: branched chain amino acid (BCAA) biosynthesis; glycerophospholipid metabolism; and phenylalanine metabolism. In cell line, BCAA promoted pancreatic cancer proliferation and inhibited Oxaliplatin-induced apoptosis. In conclusion, metabolomic analysis with the EUS-FNA sample is feasible for pancreatic cancer. The integrated analysis can identify key metabolites and enzyme-coded genes between pancreatic head and body/tail adenocarcinoma. Anti-BCAA metabolism therapy may exert promising effect, especially for the body/tail cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。