Smad7 in T cells drives T helper 1 responses in multiple sclerosis and experimental autoimmune encephalomyelitis

细胞中的 Smad7 驱动多发性硬化症和实验性自身免疫性脑脊髓炎中的 T 辅助细胞 1 反应

阅读:6
作者:Ingo Kleiter, Jian Song, Dominika Lukas, Maruf Hasan, Bernhard Neumann, Andrew L Croxford, Xiomara Pedré, Nadine Hövelmeyer, Nir Yogev, Alexander Mildner, Marco Prinz, Elena Wiese, Kurt Reifenberg, Stefan Bittner, Heinz Wiendl, Lawrence Steinman, Christoph Becker, Ulrich Bogdahn, Markus F Neurath, A

Abstract

Autoreactive CD4+ T lymphocytes play a vital role in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis. Since the discovery of T helper 17 cells, there is an ongoing debate whether T helper 1, T helper 17 or both subtypes of T lymphocytes are important for the initiation of autoimmune neuroinflammation. We examined peripheral blood CD4+ cells from patients with active and stable relapsing-remitting multiple sclerosis, and used mice with conditional deletion or over-expression of the transforming growth factor-beta inhibitor Smad7, to delineate the role of Smad7 in T cell differentiation and autoimmune neuroinflammation. We found that Smad7 is up-regulated in peripheral CD4+ cells from patients with multiple sclerosis during relapse but not remission, and that expression of Smad7 strongly correlates with T-bet, a transcription factor defining T helper 1 responses. Concordantly, mice with transgenic over-expression of Smad7 in T cells developed an enhanced disease course during experimental autoimmune encephalomyelitis, accompanied by elevated infiltration of inflammatory cells and T helper 1 responses in the central nervous system. On the contrary, mice with a T cell-specific deletion of Smad7 had reduced disease and central nervous system inflammation. Lack of Smad7 in T cells blunted T cell proliferation and T helper 1 responses in the periphery but left T helper 17 responses unaltered. Furthermore, frequencies of regulatory T cells were increased in the central nervous system of mice with a T cell-specific deletion and reduced in mice with a T cell-specific over-expression of Smad7. Downstream effects of transforming growth factor-beta on in vitro differentiation of naïve T cells to T helper 1, T helper 17 and regulatory T cell phenotypes were enhanced in T cells lacking Smad7. Finally, Smad7 was induced during T helper 1 differentiation and inhibited during T helper 17 differentiation. Taken together, the level of Smad7 in T cells determines T helper 1 polarization and regulates inflammatory cellular responses. Since a Smad7 deletion in T cells leads to immunosuppression, Smad7 may be a potential new therapeutic target in multiple sclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。