Skeletal effects of nongenomic thyroid hormone receptor beta signaling

非基因组甲状腺激素受体β信号的骨骼效应

阅读:4
作者:Richard C Lindsey, Catrina Godwin, Subburaman Mohan

Abstract

Thyroid hormone (TH) levels increase rapidly during the prepubertal growth period in mice, and this change is necessary for endochondral ossification of the epiphyses. This effect of TH on epiphyseal chondrocyte hypertrophy is mediated via TRβ1. In addition to its traditional genomic signaling role as a transcription factor, TRβ1 can also exert nongenomic effects by interacting with other signaling molecules such as PI3K. To investigate the role of nongenomic TRβ1 signaling in endochondral ossification, we evaluated the skeletal phenotype of TRβ147F mutant mice which exhibit a normal genomic response of TRβ1 to TH, but the nongenomic response through the PI3K pathway is impaired. Using microCT, we found that 13-week-old TRβ147F mice had significantly less trabecular bone mass at three sites. Histomorphometric analyses revealed that mineralizing surface to bone surface and BFR/BS were reduced in the mutant mice. Mechanistically, we found that activation of TRβ increased Alp and Osx expression in control but not TRβ147F osteoblasts. Since canonical β-catenin signaling has been implicated in mediating nongenomic TRβ-PI3K signaling, we evaluated the effect of TRβ1 activation on β-catenin target gene expression in MC3T3-E1 pre-osteoblasts. We found that β-catenin target genes were increased, suggesting that nongenomic TRβ1-PI3K pathway modulation of β-catenin signaling may mediate TRβ1 effects on osteoblast differentiation. Together, these results suggest that TH acting through TRβ1 regulates endochondral ossification in part via nongenomic signaling in mice. Further investigation of this nongenomic mechanism of TRβ1 signaling could lead to novel therapeutic targets for treatment and prevention of osteoporosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。