Neuron-microglia interaction induced bi-directional cytotoxicity associated with calpain activation

神经元-小胶质细胞相互作用诱导与钙蛋白酶激活相关的双向细胞毒性

阅读:9
作者:Maria Podbielska, Arabinda Das, Amena W Smith, Ashok Chauhan, Swapan K Ray, Jun Inoue, Mitsuyoshi Azuma, Kenkichi Nozaki, Edward L Hogan, Naren L Banik

Abstract

Activated microglia release pro-inflammatory factors and calpain into the extracellular milieu, damaging surrounding neurons. However, mechanistic links to progressive neurodegeneration in disease such as multiple sclerosis (MS) remain obscure. We hypothesize that persistent damaged/dying neurons may also release cytotoxic factors and calpain into the media, which then activate microglia again. Thus, inflammation, neuronal damage, and microglia activation, i.e., bi-directional interaction between neurons and microglia, may be involved in the progressive neurodegeneration. We tested this hypothesis using two in vitro models: (i) the effects of soluble factors from damaged primary cortical neurons upon primary rat neurons and microglia and (ii) soluble factors released from CD3/CD28 activated peripheral blood mononuclear cells of MS patients on primary human neurons and microglia. The first model indicated that neurons due to injury with pro-inflammatory agents (IFN-γ) release soluble neurotoxic factors, including COX-2, reactive oxygen species, and calpain, thus activating microglia, which in turn released neurotoxic factors as well. This repeated microglial activation leads to persistent inflammation and neurodegeneration. The released calpain from neurons and microglia was confirmed by the use of calpain inhibitor calpeptin or SNJ-1945 as well as μ- and m-calpain knock down using the small interfering RNA (siRNA) technology. Our second model using activated peripheral blood mononuclear cells, a source of pro-inflammatory Th1/Th17 cytokines and calpain released from auto-reactive T cells, corroborated similar results in human primary cell cultures and confirmed calpain to be involved in progressive MS. These insights into reciprocal paracrine regulation of cell injury and calpain activation in the progressive phase of MS, Parkinson's disease, and other neurodegenerative diseases suggest potentially beneficial preventive and therapeutic strategies, including calpain inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。