CRISPR-dCas9 Activation of TSG-6 in MSCs Modulates the Cargo of MSC-Derived Extracellular Vesicles and Attenuates Inflammatory Responses in Human Intervertebral Disc Cells In Vitro

CRISPR-dCas9 激活 MSC 中的 TSG-6 可调节 MSC 衍生的细胞外囊泡的载货量并减弱体外人椎间盘细胞的炎症反应

阅读:19
作者:Iker Martinez-Zalbidea, Gabbie Wagner, Nea Bergendahl, Addisu Mesfin, Varun Puvanesarajah, Wolfgang Hitzl, Stefan Schulze, Karin Wuertz-Kozak

Conclusions

We successfully generated an MSC line overexpressing TSG-6. Furthermore, we show that EVs isolated from these modified MSCs have the potential to attenuate the pro-inflammatory gene expression in IVD cells. This genomic engineering approach hence holds promise for boosting the therapeutic effects of EVs.

Methods

An immortalized human MSC line was transduced with a CRISPR activation lentivirus system targeting TSG-6. MSC-EVs were harvested by ultracentrifugation and particle number/size distribution was determined by nanoparticle tracking analysis. The efficiency of transduction activation was assessed by analyzing gene and protein expression. EV proteomic contents were analyzed by mass spectrometry. Human IVD cells from patients undergoing spinal surgery were isolated, expanded, exposed to IL-1β pre-stimulation and co-treated with MSC-EVs.

Purpose

The purpose of this study was to boost the therapeutic effect of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) by overexpressing the gene TSG-6 through CRISPR activation, and assess the biological activity of EVs from these modified MSCs in vitro on human intervertebral disc (IVD) cells.

Results

MSC-EVs presented size distribution, morphology, and molecular markers consistent with common EV characteristics. The expression level of TSG-6 was significantly higher (> 800 fold) in transduced MSCs relative to controls. Protein analysis of MSCs and EVs showed higher protein expression of TSG-6 in CRISPR activated samples than controls. Proteomics of EVs identified 35 proteins (including TSG-6) that were differentially expressed in TSG-6 activated EVs vs control EVs. EV co-Treatment of IL-1β pre-Stimulated IVD cells resulted in a significant downregulation of IL-8 and COX-2. Conclusions: We successfully generated an MSC line overexpressing TSG-6. Furthermore, we show that EVs isolated from these modified MSCs have the potential to attenuate the pro-inflammatory gene expression in IVD cells. This genomic engineering approach hence holds promise for boosting the therapeutic effects of EVs.

Supplementary Information

The online version contains supplementary material available at 10.1007/s12195-025-00843-4.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。