Water reservoir maintained by cell growth fuels the spreading of a bacterial swarm

细胞生长维持的水库为细菌群的扩散提供了动力

阅读:10
作者:Yilin Wu, Howard C Berg

Abstract

Flagellated bacteria can swim across moist surfaces within a thin layer of fluid, a means for surface colonization known as swarming. This fluid spreads with the swarm, but how it does so is unclear. We used micron-sized air bubbles to study the motion of this fluid within swarms of Escherichia coli. The bubbles moved diffusively, with drift. Bubbles starting at the swarm edge drifted inward for the first 5 s and then moved outward. Bubbles starting 30 μm from the swarm edge moved inward for the first 20 s, wandered around in place for the next 40 s, and then moved outward. Bubbles starting at 200 or 300 μm from the edge moved outward or wandered around in place, respectively. So the general trend was inward near the outer edge of the swarm and outward farther inside, with flows converging on a region about 100 μm from the swarm edge. We measured cellular metabolic activities with cells expressing a short-lived GFP and cell densities with cells labeled with a membrane fluorescent dye. The fluorescence plots were similar, with peaks about 80 μm from the swarm edge and slopes that mimicked the particle drift rates. These plots suggest that net fluid flow is driven by cell growth. Fluid depth is largest in the multilayered region between approximately 30 and 200 μm from the swarm edge, where fluid agitation is more vigorous. This water reservoir travels with the swarm, fueling its spreading. Intercellular communication is not required; cells need only grow.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。