A shark-derived broadly neutralizing nanobody targeting a highly conserved epitope on the S2 domain of sarbecoviruses

一种鲨鱼衍生的广谱中和纳米抗体,针对 Sarbecoviruses 的 S2 结构域上的高度保守表位

阅读:4
作者:Bo Feng #, Cuiyun Li #, Zhaoyong Zhang #, Yongming Huang, Banghui Liu, Zhengyuan Zhang, Jia Luo, Qian Wang, Li Yin, Si Chen, Ping He, Xiaoli Xiong, Jincun Zhao, Xuefeng Niu, Zhilong Chen, Ling Chen4

Abstract

The continuously evolving Omicron subvariants has diminished the effectiveness of almost all RBD-targeted antibodies in neutralizing these subvariants. The development of broad-spectrum neutralizing antibodies is desired for addressing both current and future variants. Here, we identified a shark-derived nanobody, 79C11, that can neutralize all Omicron subvariants tested so far, including BA.1 to JN.1 and KP.2, and exhibits comparable neutralizing potency against SARS-CoV-1 and pangolin coronavirus. Intranasal instillation of 79C11 can effectively prevent the infection of Omicron subvariant XBB in vivo. The designs of multivalent forms of 79C11 further enhance binding and neutralizing activity. Epitope mapping and structure simulation reveal that this nanobody binds to a highly conserved HR1 region in S2 domain of the spikes from all sarbecoviruses, suggesting that a universal vaccine may be designed to target this region for eliciting broadly neutralizing antibody response. This nanobody can also be developed as an intranasally administered prophylactic agent for preventing the infection of current and likely future SARS-CoV-2 variants, as well as other animal derived sarbecoviruses that may infect humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。