Discrimination of recombinant from natural human growth hormone using DNA aptamers

利用 DNA 适体鉴别重组和天然人类生长激素

阅读:5
作者:John G Bruno, Maria P Carrillo, Taylor Phillips, Allison Edge

Abstract

Detection of athletes who use synthetic human growth hormone (hGH; or somatotropin) to enhance physical strength and obtain an advantage in competitive sports is a formidable problem, as rhGH is virtually identical to the natural pituitary hormone. However, some post-translational and other modifications have been documented by chromatographic separation and mass spectrometry (MS) in a small percentage of rhGH. In the present work, development of DNA aptamers against research-grade rhGH and natural hGH with adsorption of the rhGH aptamers against natural hGH was shown to produce a small family of aptamer sequences that bound consistently with greater affinity to rhGH over a low nanogram-to-microgram range in ELISA-like microplate assays. This collection of rhGH discriminatory aptamer sequences shared some short sequence segments and secondary structural features. The top rhGH discriminatory aptamers also appeared to cross-react with human myoglobin and BSA but not with bone collagen peptides and an unrelated viral envelope peptide. The cross-reactivity results suggested several strings of up to five consecutive amino acids that might serve as common epitopes for aptamer binding. SDS-PAGE revealed that the rhGH existed largely as a 45-kDa dimer, and the natural hGH was almost exclusively monomeric. The existence of the rhGH dimer suggests that a discontinuous "bridge" epitope may exist on the rhGH, which spans the subunits, thereby accounting somewhat for the difference in detection. Overall, these results suggest that aptamers might be useful for routine, presumptive laboratory screening to identify athletes who are potentially cheating by administration of rhGH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。