Characterization of an immobilized enzyme reactor for on-line protein digestion

用于在线蛋白质消化的固定化酶反应器的表征

阅读:13
作者:Stephanie Moore, Stephanie Hess, James Jorgenson

Abstract

Despite the developments for faster liquid chromatographic and mass spectral detection techniques, the standard in-solution protein digestion for proteomic analyses has remained relatively unchanged. The typical in-solution trypsin protein digestion is usually the slowest part of the workflow, albeit one of the most important. The development of a highly efficient immobilized enzyme reactor (IMER) with rapid performance for on-line protein digestion would greatly decrease the analysis time involved in a proteomic workflow. Presented here is the development of a silica based IMER for on-line protein digestion, which produced rapid digestions in the presence of organic mobile phase for both model proteins and a complex sample consisting of the insoluble portion of a yeast cell lysate. Protein sequence coverage and identifications evaluated between the IMER and in-solution digestions were comparable. Overall, for a yeast cell lysate with only a 10s volumetric residence time on-column, the IMER identified 507 proteins while the in-solution digestion identified 490. There were no significant differences observed based on identified protein's molecular weight or isoelectric point between the two digestion methods. Implementation of the IMER into the proteomic workflow provided similar protein identification results, automation for sample analysis, and reduced the analysis time by 15h.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。