Seamless Tube-Type Heater with Uniform Thickness and Temperature Distribution Based on Carbon Nanotubes Aligned by Circumferential Shearing

基于周向剪切排列碳纳米管的均匀厚度和温度分布无缝管式加热器

阅读:12
作者:Yoonchul Sohn, Dongearn Kim, Sung-Hoon Park, Sang-Eui Lee

Abstract

The uniform temperature distribution, one of the requirements for long-term durability, is essential for composite heaters. An analytical model for temperature distribution of a tube-type heater was derived, and it revealed that thickness uniformity is one order more important than intrinsic material properties such as density, heat capacity, and electrical conductivity of the heating tube. We introduced a circumferential shearing process to fabricate a flexible, seamless tube-type heating layer of carbon nanotube/silicone rubber composite with outstanding uniform distribution of thickness and temperature, which may be attributed to a shorter characteristic dimension in the circumferential direction than in the axial direction. The temperature uniformity was experimentally verified at various temperatures under heating. The difference in measured thickness and temperature in circumferential direction was within ±1.3~3.0% (for tavg = 352.7 μm) and ±1.1% (for Tavg = 138.8 °C), respectively, all over the heating tube. Therefore, the circumferential shearing process can be effective for cylindrical heaters, like a heating layer of a laser printer, which fuse toners onto papers during printing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。