Dual-mode-driven nanomotors targeting inflammatory macrophages for the MRI and synergistic treatment of atherosclerosis

针对炎症巨噬细胞的双模驱动纳米马达用于 MRI 和动脉粥样硬化的协同治疗

阅读:10
作者:Min Wei, Qiaoji Jiang, Shuang Bian, Pengzhao Chang, Bangbang Li, Changzhou Shi, Yangang Zhu, Yanchen Wang, Pingfu Hou, Jingjing Li

Abstract

With the progress of atherosclerosis (AS), the arterial lumen stenosis and compact plaque structure, the thickening intima and the narrow gaps between endothelial cells significantly limit the penetration efficiency of nanoprobe to plaque, weakening the imaging sensitivity and therapy efficiency. Thus, in this study, a H2O2-NIR dual-mode nanomotor, Gd-doped mesoporous carbon nanoparticles/Pt with rapamycin (RAPA) loading and AntiCD36 modification (Gd-MCNs/Pt-RAPA-AC) was constructed. The asymmetric deposition of Pt on Gd-MCNs catalyzed H2O2 at the inflammatory site to produce O2, which could promote the self-motion of the nanomotor and ease inflammation microenvironment of AS plaque. Near-infrared (NIR) laser irradiation promoted the photothermal conversion of Gd-MCNs to generate the thermal propulsion of nanomotor and photothermal ablation of inflammatory macrophages. Meanwhile, the modification of AntiCD36 to bind with inflammatory macrophages further promotes the targeting effect. The released RAPA could inhibit the inflammatory side effects caused by photothermal effects, and promote macrophage autophagy to hinder the development of AS. The dual-mode propulsion nanomotors combining with the synergistic therapy of photothermal treatment, anti-inflammatory and pro-autophagy provided improved theranositc effect of AS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。