Inhibition of METTL14 overcomes CDK4/6 inhibitor resistance driven by METTL14-m6A-E2F1-axis in ERα-positive breast cancer

抑制 METTL14 可克服 ERα 阳性乳腺癌中 METTL14-m6A-E2F1 轴驱动的 CDK4/6 抑制剂耐药性

阅读:7
作者:Chenlin Liu #, Dong Fan #, Jiahui Sun #, Guodong Li #, Ruoxin Du, Xiaoshuang Zuo, Kuo Zhang, Wangqian Zhang, Shuning Wang, Xiaojv Li, Mingrui Du, Donghui Wang, Qiang Hao, Yingqi Zhang, Meng Li, Cun Zhang, Yuan Gao

Abstract

CDK4/6i, the first-line drug for treating ERα-positive breast cancer, significantly improves clinical outcomes. However, CDK4/6i resistance often develops and remains a major hurdle, and the underlying mechanisms remain challenging to fully investigate. Here, we used Genome-wide CRISPR/Cas9 library screening combined with single-cell sequencing to screen for molecules mediating CDK4/6i resistance and identified METTL14 as a determinant of CDK4/6i sensitivity. Clinical samples and datasets were analyzed and in vitro and in vivo experiments were performed to confirm the critical function of METTL14 in CDK4/6i resistance. Mechanistically, METTL14 can induce an increase in E2F1 expression in breast cancer cells via an m6A IGF2BP2-dependent mechanism and thus promote CDK4/6i resistance. Furthermore, through a small molecule screen, a novel METTL14 inhibitor named WKYMVM, which can restore sensitivity to CDK4/6i in CDK4/6i-resistant breast cancer cells, was identified. Treatment with folate-conjugated liposomes targeting breast cancer cells that contained both a CDK4/6i and WKYMVM revealed the synergistic effect of METTL14 inhibition with CDK4/6i therapy in a CDK4/6i-resistant PDX model. Together, our findings reveal the mechanism of CDK4/6i resistance and provide a strategy for overcoming CDK4/6i resistance via METTL14 inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。