Ionizable Lipid Nanoparticle-Mediated Delivery of Plasmid DNA in Cardiomyocytes

利用可电离脂质纳米颗粒介导的质粒DNA递送至心肌细胞

阅读:2
作者:Sérgio Scalzo ,Anderson K Santos ,Heloísa A S Ferreira ,Pedro A Costa ,Pedro H D M Prazeres ,Natália J A da Silva ,Lays C Guimarães ,Mário de Morais E Silva ,Marco T R Rodrigues Alves ,Celso T R Viana ,Itamar C G Jesus ,Alice P Rodrigues ,Alexander Birbrair ,Anderson O Lobo ,Frederic Frezard ,Michael J Mitchell ,Silvia Guatimosim ,Pedro Pires Goulart Guimaraes

Abstract

Introduction: Gene therapy is a promising approach to be applied in cardiac regeneration after myocardial infarction and gene correction for inherited cardiomyopathies. However, cardiomyocytes are crucial cell types that are considered hard-to-transfect. The entrapment of nucleic acids in non-viral vectors, such as lipid nanoparticles (LNPs), is an attractive approach for safe and effective delivery. Methods: Here, a mini-library of engineered LNPs was developed for pDNA delivery in cardiomyocytes. LNPs were characterized and screened for pDNA delivery in cardiomyocytes and identified a lead LNP formulation with enhanced transfection efficiency. Results: By varying lipid molar ratios, the LNP formulation was optimized to deliver pDNA in cardiomyocytes with enhanced gene expression in vitro and in vivo, with negligible toxicity. In vitro, our lead LNP was able to reach a gene expression greater than 80%. The in vivo treatment with lead LNPs induced a twofold increase in GFP expression in heart tissue compared to control. In addition, levels of circulating myeloid cells and inflammatory cytokines remained without significant changes in the heart after LNP treatment. It was also demonstrated that cardiac cell function was not affected after LNP treatment. Conclusion: Collectively, our results highlight the potential of LNPs as an efficient delivery vector for pDNA to cardiomyocytes. This study suggests that LNPs hold promise to improve gene therapy for treatment of cardiovascular disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。