Mixed-Phase MnO₂/N-Containing Graphene Composites Applied as Electrode Active Materials for Flexible Asymmetric Solid-State Supercapacitors

混合相 MnO₂/含氮石墨烯复合材料作为柔性非对称固态超级电容器电极活性材料的应用

阅读:9
作者:Hsin-Ya Chiu, Chun-Pei Cho

Abstract

MnO&sub2;/N-containing graphene composites with various contents of Mn were fabricated and used as active materials for the electrodes of flexible solid-state asymmetric supercapacitors. By scanning electron microscopes (SEM), transmission electron microscope (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), fourier-transform infrared spectroscopy (FTIR) and Raman spectra, the presence of MnO&sub2; and N-containing graphene was verified. The MnO&sub2; nanostructures decorated on the N-containing graphene were of α- and γ-mixed phases. N-containing graphene was found to reduce the charge transfer impedance in the high-frequency region at the electrode/electrolyte interface (RCT) due to its good conductivity. The co-existence of MnO&sub2; and N-containing graphene led to a more reduced RCT and improved charge transfer. Both the mass loading and content of Mn in an active material electrode were crucial. Excess Mn caused reduced contacts between the electrode and electrolyte ions, leading to increased RCT, and suppressed ionic diffusion. When the optimized mass loading and Mn content were used, the 3-NGM1 electrode exhibiting the smallest RCT and a lower ionic diffusion impedance was obtained. It also showed a high specific capacitance of 638 F·g-1 by calculation from the cyclic voltammetry (CV) curves. The corresponding energy and power densities were 372.7 Wh·kg-1 and 4731.1 W·kg-1, respectively. The superior capacitance property arising from the synergistic effect of mixed-phase MnO&sub2; and N-containing graphene had permitted the composites promising active materials for flexible solid-state asymmetric supercapacitors. Moreover, the increase of specific capacitance was found to be more significant by the pseudocapacitive MnO&sub2; than N-containing graphene.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。