Silk-engineered bioactive nanoparticles for targeted alleviation of acute inflammatory disease via macrophage reprogramming

丝绸工程生物活性纳米粒子通过巨噬细胞重编程有针对性地缓解急性炎症疾病

阅读:5
作者:Renfeng Liu, Erkang Zhao, Yejing Wang, Hua Zuo, Lanlan Li, Qingyou Xia, Huawei He

Abstract

Significant progress has been made in the development of potential therapies for diseases associated with inflammation and oxidative stress. Nevertheless, the availability of effective clinical treatments remains limited. Herein, we introduce a novel silk-based bioactive material, TPSF, developed by sequentially conjugating Tempol and phenylboronic acid pinacol ester to silk fibroin. This innovative reactive oxygen species (ROS) scavenging material not only effectively eliminates free radicals and hydrogen peroxide but also readily self-assembles into nanoparticle forms (TPSN). In vitro experiments have demonstrated that TPSN exhibits significant anti-inflammatory activities and cytoprotective effects against ROS-mediated damage. Consistently, in murine models of acute lung and kidney injury, TPSN outperforms the small-molecule antioxidant NAC, exhibiting superior therapeutic efficacy. Mechanistically, TPSN has the capability to reprogram M1-like macrophages toward an M2-like state. Importantly, biocompatibility assays confirm that TPSN has good safety profiles. Consequently, TPSN, characterized by its favorable protective effects and excellent biocompatibility, exhibits considerable promise as a therapeutic intervention for inflammation-related diseases. This innovative strategy, which incorporates multifunctional antioxidant components into the silk fibroin matrix, effectively addresses oxidative stress and acute inflammation. Furthermore, it highlights the potential of modified silk fibroin materials in the management and mitigation of inflammation-led tissue damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。