Evaluation of the antibacterial activity of cinnamon essential oil and its individual compounds on Aggregatibacter actinomycetemcomitans isolated from black extrinsic tooth stain: an in vitro study

评估肉桂精油及其单个化合物对从黑色外源性牙渍中分离的放线菌伴放线菌的抗菌活性:一项体外研究

阅读:7
作者:W A Lotfy, M A Matar, B M Alkersh

Aim

Black extrinsic tooth stain (BETS) is a health challenge that commonly affects children. Aggregatibacter actinomycetemcomitans (Aa) presents in higher prevalence within the polymicrobial community of BETS. In this study, the anti-planktonic and anti-sessile activities of cinnamon essential oil (CEO) and its individual compounds against Aa were evaluated. The preventive effect of CEO and its active substances on BETS formation was also studied in vitro.

Conclusion

CEO and its individual compounds have marked antibacterial activity against Aa. The effective results against planktonic and sessile Aa within reasonable time indicate that they can be used to prevent BETS.

Methods

Aa was isolated from a preschool child with BETS and was identified based on the morphological characteristics, MALDI-TOF mass spectroscopy and 16S rRNA sequencing. The effect of CEO and its individual compounds on the growth kinetics of planktonic and sessile Aa cells as well as their antibacterial efficacy and their rate of bacterial killing were examined. The preventive effect of CEO and its active substances on the formation of BETS was evaluated using an ex vivo model. The data were analysed using one-way analysis of variance (ANOVA) and the significance level was set at p < 0.05.

Results

Out of eight individual compounds of CEO, only eugenol, cinnamaldehyde and α-methyl cinnamaldehyde showed anti-Aa activities. The values of the minimum inhibitory concentrations (MICs) were in the following order: CEO (421.5 mg/ml) > α-methyl cinnamaldehyde (26.37 mg/ml) > cinnamaldehyde (0.209 mg/ml) > eugenol (0.052 mg/ml). CEO, eugenol, cinnamaldehyde and α-methyl cinnamaldehyde, respectively, exhibited two-, four-, four- and eightfold increase of sessile MIC compared to their planktonic MIC. The growth kinetics of both planktonic and sessile Aa in the presence of CEO, eugenol, cinnamaldehyde and α-methyl cinnamaldehyde revealed a complete inhibition at the MICs and 5.3%-37.4% biofilm inhibition at sub-MICs. The time-killing study demonstrated that CEO, eugenol and cinnamaldehyde were capable of reducing the survival rate of both planktonic and sessile Aa cells after 15-20 and 25-30 min, respectively. However, α-methyl cinnamaldehyde showed a superior anti-planktonic to anti-biofilm activity. The daily incorporation of CEO, eugenol and cinnamaldehyde at their MICs for 14 days totally prevented the formation of BETS in the ex vivo model; however, in the case of α-methyl cinnamaldehyde, BETS was visually detectable after 10 days.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。