Immunogenic cell death mediated TLR3/4-activated MSCs in U87 GBM cell line

U87 GBM 细胞系中免疫原性细胞死亡介导的 TLR3/4 激活 MSC

阅读:5
作者:Seyed Mahdi Emami Meybodi, Fateme Moradi Moraddahande, Ali Dehghani Firoozabadi

Aims

Glioblastoma (GBM) is an aggressive primary brain cancer with no promising curative therapies. It has been indicated that MSCs can interact with the tumour microenvironment (TME) through the secretion of soluble mediators regulating intercellular signalling within the TME. TLRs are a multigene family of pattern recognition receptors with evolutionarily conserved regions and are widely expressed in immune and other body cells. MSCs by TLRs can recognize conserved molecular components (DAPMPs and PAPMPs) and activate signalling pathways, which regulate immune and inflammatory responses. MSCs may exert immunomodulatory functions through interaction with their expressed toll-like receptors (TLRs) and exert a protective effect against tumour antigens. As an emerging approach, we aimed to monitor the U87 cell line growth, migration and death markers following specific TLR3/4-primed-MSCs-CMs treatment.

Background and aims

Glioblastoma (GBM) is an aggressive primary brain cancer with no promising curative therapies. It has been indicated that MSCs can interact with the tumour microenvironment (TME) through the secretion of soluble mediators regulating intercellular signalling within the TME. TLRs are a multigene family of pattern recognition receptors with evolutionarily conserved regions and are widely expressed in immune and other body cells. MSCs by TLRs can recognize conserved molecular components (DAPMPs and PAPMPs) and activate signalling pathways, which regulate immune and inflammatory responses. MSCs may exert immunomodulatory functions through interaction with their expressed toll-like receptors (TLRs) and exert a protective effect against tumour antigens. As an emerging approach, we aimed to monitor the U87 cell line growth, migration and death markers following specific TLR3/4-primed-MSCs-CMs treatment.

Conclusion

Our findings confirmed that the exposure of TLR3/4-activated-MSCs-CMs with glioma tumour cells possibly changes the immunogenicity of the tumour microenvironment and induces immunogenic programmed cell death. Our results can support the idea that TLR3/4-primed-MSCs can lead to innate immune-mediated cell death and modify tumour cell biology in invasive and metastatic cancers.

Results

We investigated the phenotypic and functional outcomes of primed-CMs and glioma cell line co-culture following short-term, low-dose TLR3/4 priming. The gene expression profile of target genes, including apoptotic markers and related genes, was analyzed by qRT-PCR. MicroRNA-Seq examined the miRNA expression patterns, and flow cytometry evaluated the cell viability and cycle stages. The results showed significant changes in apoptosis and likely necroptosis-related markers following TLR3/4-primed-MSCs-CMs exposure in the glioma cell line. Notably, we observed a considerable induction of selective pro-apoptotic markers and both the early and late stages of apoptosis in treated U87 cell lines. Additionally, the migration rate of glioma cells significantly decreased following MSCs-CM treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。