Acute lung injury induced by recombinant SARS-CoV-2 spike protein subunit S1 in mice

重组 SARS-CoV-2 刺突蛋白亚基 S1 诱导小鼠急性肺损伤

阅读:13
作者:Jiwei Zhu #, Jinglin Wu #, Manlu Lu #, Qianqian Jiao, Xiaojing Liu, Lu Liu, Mingzhen Li, Bin Zhang, Junhong Yan, Yan Yu, Lei Pan

Background

The intricacies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing acute lung injury (ALI) and modulating inflammatory factor dynamics in vivo remain poorly elucidated. The present study endeavors to explore the impact of the recombinant SARS-CoV-2 spike protein S1 subunit (S1SP) on ALI and inflammatory factor profiles in mice, aiming to uncover potential therapeutic targets and intervention strategies for the prevention and management of Coronavirus Disease 2019 (COVID-19).

Conclusion

The administration of S1SP to K18-hACE2 mice resulted in severe lung injury, enhanced vascular permeability, and compromised epithelial barrier function in vivo. This was accompanied by disruption of lung tight junctions, the manifestation of severe oxidative stress and a cytokine storm, as well as the activation of the NF-κB signaling pathway, highlighting key pathological processes underlying COVID-19-induced lung injury.

Methods

To mimic COVID-19 infection, K18-hACE2 transgenic mice were intratracheally instilled with S1SP, while C57BL/6 mice were administered LPS to form a positive control group. This setup facilitated the examination of lung injury severity, inflammatory factor levels, and alterations in signaling pathways in mice mimicking COVID-19 infection. Histopathological assessment through HE staining, along with analysis of lung wet/dry ratio and ultrasound imaging, revealed severe lung injury.

Results

After molding, K18-hACE2 mice exhibited a pronounced reduction in body weight and showed more significant lung injury (P < 0.05). Notably, there was a significant elevation in vascular permeability, total protein, and total white blood cells in bronchoalveolar lavage fluid (BALF) (P < 0.05), indicative of tissue damage. Additionally, the tight junction of lung tissue was compromised (P < 0.05), accompanied by intense oxidative stress marked by decreased SOD activity and elevated MDA content (P < 0.05). Cytokine levels, including IL-6, IL-1β, TNF-α, and MIG, were significantly upregulated in both BALF and serum of S1SP + K18 mice (P < 0.05). Furthermore, S1SP prominently augmented the expression of p-p65/P65 and attenuated IκBα expression in the NF-κB signaling pathway of humanized mice (P < 0.05), corroborating a heightened inflammatory response at the tissue level (P < 0.05).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。