A Mineral-Doped Micromodel Platform Demonstrates Fungal Bridging of Carbon Hot Spots and Hyphal Transport of Mineral-Derived Nutrients

矿物掺杂微模型平台展示了真菌对碳热点的桥接和矿物质衍生营养物质的菌丝运输

阅读:12
作者:Arunima Bhattacharjee, Odeta Qafoku, Jocelyn A Richardson, Lindsey N Anderson, Kaitlyn Schwarz, Lisa M Bramer, Gerard X Lomas, Daniel J Orton, Zihua Zhu, Mark H Engelhard, Mark E Bowden, William C Nelson, Ari Jumpponen, Janet K Jansson, Kirsten S Hofmockel, Christopher R Anderton

Abstract

Soil fungi facilitate the translocation of inorganic nutrients from soil minerals to other microorganisms and plants. This ability is particularly advantageous in impoverished soils because fungal mycelial networks can bridge otherwise spatially disconnected and inaccessible nutrient hot spots. However, the molecular mechanisms underlying fungal mineral weathering and transport through soil remains poorly understood primarily due to the lack of a platform for spatially resolved analysis of biotic-driven mineral weathering. Here, we addressed this knowledge gap by demonstrating a mineral-doped soil micromodel platform where mineral weathering mechanisms can be studied. We directly visualize acquisition and transport of inorganic nutrients from minerals through fungal hyphae in the micromodel using a multimodal imaging approach. We found that Fusarium sp. strain DS 682, a representative of common saprotrophic soil fungus, exhibited a mechanosensory response (thigmotropism) around obstacles and through pore spaces (~12 μm) in the presence of minerals. The fungus incorporated and translocated potassium (K) from K-rich mineral interfaces, as evidenced by visualization of mineral-derived nutrient transport and unique K chemical moieties following fungus-induced mineral weathering. Specific membrane transport proteins were expressed in the fungus in the presence of minerals, including those involved in oxidative phosphorylation pathways and the transmembrane transport of small-molecular-weight organic acids. This study establishes the significance of a spatial visualization platform for investigating microbial induced mineral weathering at microbially relevant scales. Moreover, we demonstrate the importance of fungal biology and nutrient translocation in maintaining fungal growth under water and carbon limitations in a reduced-complexity soil-like microenvironment. IMPORTANCE Fungal species are foundational members of soil microbiomes, where their contributions in accessing and transporting vital nutrients is key for community resilience. To date, the molecular mechanisms underlying fungal mineral weathering and nutrient translocation in low-nutrient environments remain poorly resolved due to the lack of a platform for spatial analysis of biotic weathering processes. Here, we addressed this knowledge gap by developing a mineral-doped soil micromodel platform. We demonstrate the function of this platform by directly probing fungal growth using spatially resolved optical and chemical imaging methodologies. We found the presence of minerals was required for fungal thigmotropism around obstacles and through soil-like pore spaces, and this was related to fungal transport of potassium (K) and corresponding K speciation from K-rich minerals. These findings provide new evidence and visualization into hyphal transport of mineral-derived nutrients under nutrient and water stresses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。