Lanthanide(III) Complexes of Cyclen Triacetates and Triamides Bearing Tertiary Amide-Linked Antennae

带有三级酰胺连接天线的 Cyclen 三乙酸酯和三酰胺的镧系元素 (III) 配合物

阅读:6
作者:Salauat R Kiraev, Emilie Mathieu, Fiona Siemens, Daniel Kovacs, Ellen Demeyere, K Eszter Borbas

Abstract

The coordination compounds of the trivalent lanthanide ions (Ln(III)) have unique photophysical properties. Ln(III) excitation is usually performed through a light-harvesting antenna. To enable Ln(III)-based emitters to reach their full potential, an understanding of how complex structure affects sensitization and quenching processes is necessary. Here, the role of the linker between the antenna and the metal binding fragment was studied. Four macrocyclic ligands carrying coumarin 2 or 4-methoxymethylcarbostyril sensitizing antennae linked to an octadentate macrocyclic ligand binding site were synthesized. Complexation with Ln(III) (Ln = La, Sm, Eu, Gd, Tb, Yb and Lu) yielded species with overall -1, 0, or +2 and +3-charge. Paramagnetic 1H NMR spectroscopy indicated subtle differences between the coumarin- and carbostyril-carrying Eu(III) and Yb(III) complexes. Cyclic voltammetry showed that the effect of the linker on the Eu(III)/Eu(II) apparent reduction potential was dependent on the electronic properties of the N-substituent. The Eu(III), Tb(III) and Sm(III) complexes were all luminescent. Coumarin-sensitized complexes were poorly emissive; photoinduced electron transfer was not a major quenching pathway in these species. These results show that seemingly similar emitters can undergo very different photophysical processes, and highlight the crucial role the linker can play.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。