Transplantation of genetically engineered cardiac fibroblasts producing recombinant human erythropoietin to repair the infarcted myocardium

移植产生重组人促红细胞生成素的基因工程心脏成纤维细胞来修复梗塞的心肌

阅读:7
作者:Emil Ruvinov, Orna Sharabani-Yosef, Arnon Nagler, Tom Einbinder, Micha S Feinberg, Radka Holbova, Amos Douvdevani, Jonathan Leor

Background

Erythropoietin possesses cellular protection properties. The

Conclusion

In situ expression of rhEPO enhances vascularization and reduces cell apoptosis in the infarcted myocardium. However, local EPO therapy is insufficient for functional improvement after MI in rat.

Results

RhEPO-producing cardiac fibroblasts were generated ex vivo by transduction with retroviral vector. The anti-apoptotic effect of rhEPO-producing fibroblasts was evaluated by co-culture with rat neonatal cardiomyocytes exposed to H2O2-induced oxidative stress. Annexin V/PI assay and DAPI staining showed that compared with control, rhEPO forced expression markedly attenuated apoptosis and improved survival of cultured cardiomyocytes. To test the effect of rhEPO on the infarcted myocardium, Sprague-Dawley rats were subjected to permanent coronary artery occlusion, and rhEPO-producing fibroblasts, non-transduced fibroblasts, or saline, were injected into the scar tissue seven days after infarction. One month later, immunostaining identified rhEPO expression in the implanted engineered cells but not in controls. Compared with non-transduced fibroblasts or saline injection, implanted rhEPO-producing fibroblasts promoted vascularization in the scar, and prevented cell apoptosis. By two-dimensional echocardiography and postmortem morphometry, transplanted EPO-engineered fibroblasts did not prevent left ventricular (LV) dysfunction and adverse LV remodeling 5 and 9 weeks after MI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。