Synovium-derived stem cell-based chondrogenesis

滑膜干细胞为基础的软骨形成

阅读:5
作者:Ming Pei, Fan He, Gordana Vunjak-Novakovic

Abstract

Synovium is considered a candidate source of cells for cartilage tissue engineering. Compared with mesenchymal stem cells (MSCs) from other sources, synovium-derived stem cells (SDSCs) have a higher capacity for chondrogenic differentiation. Our objective was to define cocktails of growth factors that support the growth and chondrogenic differentiation of SDSCs in chemically defined medium. We established a fast and highly selective technique of negative isolation of SDSC populations. The individual and combined effects of three growth factors-transforming growth factor-beta1 (TGF-beta1), insulin-like growth factor I (IGF-I), and basic fibroblast growth factor (FGF-2)-were evaluated in serum-free pellet cultures of SDSCs for the chondrogenesis of SDSCs using histology, biochemical analysis, and real-time RT-PCR. In vitro studies identified TGF-beta1 as the key factor for both the growth and chondrogenesis of SDSCs. The highest rates of SDSC growth were observed with the synergistic interaction of all three factors. With respect to chondrogenic differentiation of SDSCs, the interaction of TGF-beta1 and IGF-I applied simultaneously was superior to the sequential application of these two factors or any other combination of growth factors studied. Based on these findings, we propose a two-step protocol for the derivation of chondrogenic SDSCs: a cocktail of TGF-beta1, IGF-I, and FGF-2 is applied first to induce cell growth followed by a cocktail of TGF-beta1 and IGF-I applied to induce chondrogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。