ATM-dependent ERK signaling via AKT in response to DNA double-strand breaks

DNA 双链断裂后,ATM 依赖的 ERK 通过 AKT 发出信号

阅读:5
作者:Ashraf Khalil, Rhiannon N Morgan, Bret R Adams, Sarah E Golding, Seth M Dever, Elizabeth Rosenberg, Lawrence F Povirk, Kristoffer Valerie

Abstract

Ionizing radiation (IR) triggers many signaling pathways primarily originating from either damaged DNA or non-nuclear sources such as growth factor receptors. Thus, to study the DNA damage-induced signaling component alone by irradiation would be a challenge. To generate DNA double-strand breaks (DSBs) and minimize non-nuclear signaling, human cancer cells having bromodeoxyuridine (BrdU) - substituted DNA were treated with the photosensitizer Hoechst 33258 followed by long wavelength UV (UV-A) treatment (BrdU photolysis). BrdU photolysis resulted in well-controlled, dose- dependent generation of DSBs equivalent to radiation doses between 0.2 - 20 Gy, as determined by pulsed-field gel electrophoresis, and accompanied by dose-dependent ATM (ser-1981), H2AX (ser-139), Chk2 (thr-68), and p53 (ser-15) phosphorylation. Interestingly, low levels (≤ 2 Gy equivalents) of BrdU photolysis stimulated ERK phosphorylation whereas higher (> 2 Gy eq.) resulted in ERK dephosphorylation. ERK phosphorylation was ATM-dependent whereas dephosphorylation was ATM-independent. The ATM-dependent increase in ERK phosphorylation was also seen when DSBs were generated by transfection of cells with an EcoRI expression plasmid or by electroporation of EcoRI enzyme. Furthermore, AKT was critical for transmitting the DSB signal to ERK. Altogether, our results show that low levels of DSBs trigger ATM- and AKT-dependent ERK pro-survival signaling and increased cell proliferation whereas higher levels result in ERK dephosphorylation consistent with a dose-dependent switch from pro-survival to anti-survival signaling.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。