RGS21, a regulator of taste and mucociliary clearance?

RGS21,味觉和粘液纤毛清除的调节剂?

阅读:8
作者:Adam J Kimple, Alaina L Garland, Staci P Cohen, Vincent Setola, Francis S Willard, Thomas Zielinski, Robert G Lowery, Robert Tarran, David P Siderovski

Conclusions

Rgs21 is expressed in sinonasal mucosa, is amenable to purification as a recombinant protein, and can bind to Gα(i/o/q) subunits. Furthermore, RGS21 can accelerate the hydrolysis rate of GTP on Gαi subunits. This provides evidence that RGS21 may be a negative regulator of bitterant responses. Future studies will be needed to determine the physiological role of this protein in mucociliary clearance.

Methods

Rgs21 expression in sinonasal mucosa was determined using quantitative, real-time PCR and a transgenic mouse expressing RFP from the Rgs21 promoter. Rgs21 was cloned, over-expressed, and purified using multistep protein chromatography. Biochemical and biophysical assays were used to determine if RGS21 could bind and accelerate the hydrolysis of GTP on heterotrimeric Gα subunits.

Results

Rgs21 was expressed in sinonasal mucosa and lingual epithelium. Purified recombinant protein directly bound and accelerated GTP hydrolysis on Gα subunits. Conclusions: Rgs21 is expressed in sinonasal mucosa, is amenable to purification as a recombinant protein, and can bind to Gα(i/o/q) subunits. Furthermore, RGS21 can accelerate the hydrolysis rate of GTP on Gαi subunits. This provides evidence that RGS21 may be a negative regulator of bitterant responses. Future studies will be needed to determine the physiological role of this protein in mucociliary clearance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。