Intrinsic nucleus-targeted ultra-small metal-organic framework for the type I sonodynamic treatment of orthotopic pancreatic carcinoma

本征核靶向超小金属有机框架用于原位胰腺癌 I 型声动力治疗

阅读:4
作者:Tao Zhang, Yu Sun, Jing Cao, Jiali Luo, Jing Wang, Zhenqi Jiang, Pintong Huang

Background

Sonodynamic therapy (SDT) strategies exhibit a high tissue penetration depth and can achieve therapeutic efficacy by facilitating the intertumoral release of reactive oxygen species (ROS) with a short lifespan and limited diffusion capabilities. The majority of SDT systems developed to date are of the highly O2-dependent type II variety, limiting their therapeutic utility in pancreatic cancer and other hypoxic solid tumor types.

Conclusion

The nucleus-targeted ultra-small Ti-TCPP MOF developed herein represents an effective approach to the enhanced SDT treatment of tumors in response to low-intensity US irradiation.

Results

Herein, a nucleus-targeted ultra-small Ti-tetrakis(4-carboxyphenyl)porphyrin (TCPP) metal-organic framework (MOF) platform was synthesized and shown to be an effective mediator of SDT. This MOF was capable of generating large quantities of ROS in an oxygen-independent manner in response to low-intensity ultrasound (US) irradiation (0.5 W cm-2), thereby facilitating both type I and type II SDT. This approach thus holds great promise for the treatment of highly hypoxic orthotopic pancreatic carcinoma solid tumors. This Ti-TCPP MOF was able to induce in vitro cellular apoptosis by directly destroying DNA and inducing S phase cell cycle arrest following US irradiation. The prolonged circulation, high intratumoral accumulation, and nucleus-targeting attributes of these MOF preparations significantly also served to significantly inhibit orthotopic pancreatic tumor growth and prolong the survival of tumor-bearing mice following Ti-TCPP + US treatment. Moreover, this Ti-TCPP MOF was almost completely cleared from mice within 7 days of treatment, and no apparent treatment-associated toxicity was observed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。