Influenza A virus hemagglutinin prevents extensive membrane damage upon dehydration

甲型流感病毒血凝素可防止脱水时大面积膜损伤

阅读:5
作者:Maiara A Iriarte-Alonso, Alexander M Bittner, Salvatore Chiantia

Abstract

While the molecular mechanisms of virus infectivity are rather well known, the detailed consequences of environmental factors on virus biophysical properties are poorly understood. Seasonal influenza outbreaks are usually connected to the low winter temperature, but also to the low relative air humidity. Indeed, transmission rates increase in cold regions during winter. While low temperature must slow degradation processes, the role of low humidity is not clear. We studied the effect of relative humidity on a model of Influenza A H1N1 virus envelope, a supported lipid bilayer containing the surface glycoprotein hemagglutinin (HA), which is present in the viral envelope in very high density. For complete cycles of hydration, dehydration and rehydration, we evaluate the membrane properties in terms of structure and dynamics, which we assess by combining confocal fluorescence microscopy, raster image correlation spectroscopy, line-scan fluorescence correlation spectroscopy and atomic force microscopy. Our findings indicate that the presence of HA prevents macroscopic membrane damage after dehydration. Without HA, fast membrane disruption is followed by irreversible loss of lipid and protein mobility. Although our model is principally limited by the membrane composition, the macroscopic effects of HA under dehydration stress reveal new insights on the stability of the virus at low relative humidity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。