The Effects of Indoxyl Sulfate and Oxidative Stress on the Severity of Peripheral Nerve Dysfunction in Patients with Chronic Kidney Diseases

硫酸吲哚酚与氧化应激对慢性肾脏病患者周围神经功能障碍严重程度的影响

阅读:4
作者:Yun-Ru Lai, Ben-Chung Cheng, Chia-Ni Lin, Wen-Chan Chiu, Ting-Yin Lin, Hui-Ching Chiang, Chun-En Aurea Kuo, Chih-Cheng Huang, Cheng-Hsien Lu

Abstract

Pieces of evidence support the view that the accumulation of uremic toxins enhances oxidative stress and downstream regulation of signaling pathways, contributing to both endothelial microangiography and cell dysfunction. This study is to address the impact of protein-binding uremic toxins on the severity of peripheral nerve function in patients with chronic kidney disease (CKD). Fifty-four patients with CKD were included in the Toronto Clinical Neuropathy Score (TCNS), nerve conduction study (NCS), and laboratory studies including protein-binding uremic toxin (indoxyl sulfate [IS] and p-cresyl sulfate [PCS]), oxidative stress (Thiol and thiobarbituric acid reacting substances [TBARS]), and endothelial dysfunction (serum intercellular adhesion molecule 1 [sICAM-1] and serum vascular adhesion molecule 1 [sVCAM-1]) at enrollment. We used composite amplitude scores (CAS) to analyze the severity of nerve conductions on peripheral nerve function. TCNS and CAS were higher in the diabetic CKD group (p = 0.02 and 0.01, respectively). The NCS revealed the compound muscle action potential of ulnar and peroneal nerves and the sensory nerve action potential of ulnar and sural nerves (p = 0.004, p = 0.004, p = 0.004, and p = 0.001, respectively), which was found to be significantly low in the diabetic group. CAS was significantly correlated with age (r = 0.27, p = 0.04), urine albumin-creatinine ratio (UACR) (r = 0.29, p = 0.046), free-form IS (r = 0.39, p = 0.009), sICAM-1 (r = 0.31, p = 0.02), sVCAM-1 (r = 0.44, p < 0.0001), TBARS (r = 0.35, p = 0.002), and thiols (r = −0.28, p = 0.045). Linear regression revealed that only TBARS and free-form IS were strongly associated with CAS. The mediation analysis shows that the sVCAM-1 level serves as the mediator between higher IS and higher CAS. IS and oxidative stress contribute to the severity of peripheral nerve dysfunction in patients with CKD, and chronic glycemic impairment can worsen the conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。