Inhibiting ALK2/ALK3 Signaling to Differentiate and Chemo-Sensitize Medulloblastoma

抑制 ALK2/ALK3 信号传导以分化和化学增敏髓母细胞瘤

阅读:8
作者:Doria Filipponi, Marina Pagnuzzi-Boncompagni, Gilles Pagès

Background

Medulloblastoma (MB) is a malignant pediatric brain tumor, and it represents the leading cause of death related to cancer in childhood. New perspectives for therapeutic development have emerged with the identification of cancer stem cells (CSCs) displaying tumor initiating capability and chemoresistance. However, the mechanisms responsible for CSCs maintenance are poorly understood. The lack of a universal marker signature represents the main constraints to identify and isolate CSCs within the tumor.

Conclusions

Our work suggests that interfering with the BMP4 signaling pathway impaired the maintenance of the CSC pool by promoting cell differentiation. Hence, differentiation therapy might represent an innovative therapeutic to improve the current standard of care in MB patients.

Methods

To identify signaling pathways promoting CSC maintenance in MB, we combined tumorsphere assays with targeted neurogenesis PCR pathway arrays.

Results

We showed a consistent induction of signaling pathways regulating pluripotency of CSCs in all the screened MB cells. BMP4 signaling was consistently enriched in all tumorsphere(s) independently of their specific stem-cell marker profile. The octamer-binding transcription factor 4 (OCT4), an important regulator of embryonic pluripotency, enhanced CSC maintenance in MBs by inducing the BMP4 signaling pathway. Consistently, inhibition of BMP4 signaling with LDN-193189 reduced stem-cell traits and promoted cell differentiation. Conclusions: Our work suggests that interfering with the BMP4 signaling pathway impaired the maintenance of the CSC pool by promoting cell differentiation. Hence, differentiation therapy might represent an innovative therapeutic to improve the current standard of care in MB patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。