NAT10 regulates the repair of UVB-induced DNA damage and tumorigenicity

NAT10 调控 UVB 诱导的 DNA 损伤修复和致瘤性

阅读:5
作者:Zizhao Yang, Emma Wilkinson, Yan-Hong Cui, Haixia Li, Yu-Ying He

Abstract

Chemical modifications in messenger RNA (mRNA) regulate gene expression and play critical roles in stress responses and diseases. Recently we have shown that N6-methyladenosine (m6A), the most abundant mRNA modification, promotes the repair of UVB-induced DNA damage by regulating global genome nucleotide excision repair (GG-NER). However, the roles of other mRNA modifications in the UVB-induced damage response remain understudied. N4-acetylcytidine (ac4C) is deposited in mRNA by the RNA-binding acetyltransferase NAT10. This NAT10-mediated ac4C in mRNA has been reported to increase both mRNA stability and translation. However, the role of ac4C and NAT10 in the UVB-induced DNA damage response remains poorly understood. Here we show that NAT10 plays a critical role in the repair of UVB-induced DNA damage lesions through regulating the expression of the key GG-NER gene DDB2. We found that knockdown of NAT10 enhanced the repair of UVB-induced DNA damage lesions by promoting the mRNA stability of DDB2. Our findings are in contrast to the previously reported role of NAT10-mediated ac4C deposition in promoting mRNA stability and may represent a novel mechanism for ac4C in the UVB damage response. Furthermore, NAT10 knockdown in skin cancer cells decreased skin cancer cell proliferation in vitro and tumorigenicity in vivo. Chronic UVB irradiation increases NAT10 protein levels in mouse skin. Taken together, our findings demonstrate a novel role for NAT10 in the repair of UVB-induced DNA damage products by decreasing the mRNA stability of DDB2 and suggest that NAT10 is a potential novel target for preventing and treating skin cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。