Neurally adjusted ventilatory assist mitigates ventilator-induced diaphragm injury in rabbits

神经调节通气辅助可减轻兔子呼吸机引起的膈肌损伤

阅读:11
作者:Tatsutoshi Shimatani, Nobuaki Shime, Tomohiko Nakamura, Shinichiro Ohshimo, Justin Hotz, Robinder G Khemani

Background

Ventilator-induced diaphragmatic dysfunction is a serious complication associated with higher ICU mortality, prolonged mechanical ventilation, and unsuccessful withdrawal from mechanical ventilation. Although neurally adjusted ventilatory assist (NAVA) could be associated with lower patient-ventilator asynchrony compared with conventional ventilation, its effects on diaphragmatic dysfunction have not yet been well elucidated.

Conclusions

Preservation of spontaneous breathing using either PSV or NAVA can preserve the cross sectional area of the diaphragm to prevent atrophy. However, NAVA may be superior to PSV in preventing sarcomere injury and apoptosis of myofibrotic cells of the diaphragm, and this effect may be mediated by patient-ventilator asynchrony.

Methods

Twenty Japanese white rabbits were randomly divided into four groups, (1) no ventilation, (2) controlled mechanical ventilation (CMV) with continuous neuromuscular blockade, (3) NAVA, and (4) pressure support ventilation (PSV). Ventilated rabbits had lung injury induced, and mechanical ventilation was continued for 12 h. Respiratory waveforms were continuously recorded, and the asynchronous events measured. Subsequently, the animals were euthanized, and diaphragm and lung tissue were removed, and stained with Hematoxylin-Eosin to evaluate the extent of lung injury. The myofiber cross-sectional area of the diaphragm was evaluated under the adenosine triphosphatase staining, sarcomere disruptions by electron microscopy, apoptotic cell numbers by the TUNEL method, and quantitative analysis of Caspase-3 mRNA expression by real-time polymerase chain reaction.

Results

Physiological index, respiratory parameters, and histologic lung injury were not significantly different among the CMV, NAVA, and PSV. NAVA had lower asynchronous events than PSV (median [interquartile range], NAVA, 1.1 [0-2.2], PSV, 6.8 [3.8-10.0], p = 0.023). No differences were seen in the cross-sectional areas of myofibers between NAVA and PSV, but those of Type 1, 2A, and 2B fibers were lower in CMV compared with NAVA. The area fraction of sarcomere disruptions was lower in NAVA than PSV (NAVA vs PSV; 1.6 [1.5-2.8] vs 3.6 [2.7-4.3], p < 0.001). The proportion of apoptotic cells was lower in NAVA group than in PSV (NAVA vs PSV; 3.5 [2.5-6.4] vs 12.1 [8.9-18.1], p < 0.001). There was a tendency in the decreased expression levels of Caspase-3 mRNA in NAVA groups. Asynchrony Index was a mediator in the relationship between NAVA and sarcomere disruptions. Conclusions: Preservation of spontaneous breathing using either PSV or NAVA can preserve the cross sectional area of the diaphragm to prevent atrophy. However, NAVA may be superior to PSV in preventing sarcomere injury and apoptosis of myofibrotic cells of the diaphragm, and this effect may be mediated by patient-ventilator asynchrony.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。