Hydrogen Tunnelling as a Probe of the Involvement of Water Vibrational Dynamics in Aqueous Chemistry?

氢隧穿作为水振动动力学参与水化学的探针?

阅读:7
作者:Ana Karković Marković, Cvijeta Jakobušić Brala, Viktor Pilepić, Stanko Uršić

Abstract

Our study of tunnelling in proton-coupled electron transfer (PCET) oxidation of ascorbate with hexacyanoferrate(III) follows the insights obtained from ultrafast 2D IR spectroscopy and theoretical studies of the vibrational water dynamics that led to the proposal of the involvement of collective intermolecular excitonic vibrational water dynamics in aqueous chemistry. To test the proposal, the hydrogen tunnelling modulation observed in the PCET reaction studied in the presence of low concentrations of various partial hydrophobic solutes in the water reaction system has been analyzed in terms of the proposed involvement of the collective intermolecular vibrational water dynamics in activation process in the case. The strongly linear correlation between common tunnelling signatures, isotopic values of Arrhenius prefactor ratios ln AH/AD and isotopic differences in activation enthalpies ΔΔH‡ (H,D) observed in the process in fairly diluted water solutions containing various partial hydrophobic solutes (such as dioxane, acetonitrile, ethanol, and quaternary ammonium ions) points to the common physical origin of the phenomenon in all the cases. It is suggested that the phenomenon can be rooted in an interplay of delocalized collective intermolecular vibrational dynamics of water correlated with vibrations of the coupled transition configuration, where the donor-acceptor oscillations, the motions being to some degree along the reaction coordinate, lead to modulation of hydrogen tunnelling in the reaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。