Axon development is regulated at genetic and proteomic interfaces between the integrin adhesome and the RPM-1 ubiquitin ligase signaling hub

轴突发育受整合素粘附体和 RPM-1 泛素连接酶信号中心之间的遗传和蛋白质组界面调控

阅读:7
作者:Jonathan Amezquita, Muriel Desbois, Karla J Opperman, Joseph S Pak, Elyse L Christensen, Nikki T Nguyen, Karen Diaz-Garcia, Melissa A Borgen, Brock Grill

Abstract

Integrin signaling plays important roles in development and disease. An adhesion signaling network called the integrin adhesome has been principally defined using bioinformatics and proteomics. To date, the adhesome has not been studied using integrated proteomic and genetic approaches. Here, proteomic studies in C. elegans identified physical associations between the RPM-1 ubiquitin ligase signaling hub and numerous adhesome components including Talin, Kindlin and beta-integrin. C. elegans RPM-1 is orthologous to human MYCBP2, a prominent player in nervous system development associated with a neurodevelopmental disorder. Using neuron-specific, CRISPR loss-of-function strategies, we show that core adhesome components affect axon development and interact genetically with RPM-1. Mechanistically, Talin opposes RPM-1 in a functional 'tug-of-war' on growth cones that is required for accurate axon termination. Thus, our findings orthogonally validate the adhesome via multi-component genetic and physical interfaces with a key neuronal signaling hub and identify new links between the adhesome and brain disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。