Neural Network Accelerated Investigation of the Dynamic Structure-Performance Relations of Electrochemical CO2 Reduction over SnO x Surfaces

神经网络加速研究 SnO x 表面电化学 CO2 还原的动态结构-性能关系

阅读:8
作者:Lulu Li, Zhi-Jian Zhao, Gong Zhang, Dongfang Cheng, Xin Chang, Xintong Yuan, Tuo Wang, Jinlong Gong

Abstract

Heterogeneous catalysts, especially metal oxides, play a curial role in improving energy conversion efficiency and production of valuable chemicals. However, the surface structure at the atomic level and the nature of active sites are still ambiguous due to the dynamism of surface structure and difficulty in structure characterization under electrochemical conditions. This paper describes a strategy of the multiscale simulation to investigate the SnO x reduction process and to build a structure-performance relation of SnO x for CO2 electroreduction. Employing high-dimensional neural network potential accelerated molecular dynamics and stochastic surface walking global optimization, coupled with density functional theory calculations, we propose that SnO2 reduction is accompanied by surface reconstruction and charge density redistribution of active sites. A regulatory factor, the net charge, is identified to predict the adsorption capability for key intermediates on active sites. Systematic electronic analyses reveal the origin of the interaction between the adsorbates and the active sites. These findings uncover the quantitative correlation between electronic structure properties and the catalytic performance of SnO x so that Sn sites with moderate charge could achieve the optimally catalytic performance of the CO2 electroreduction to formate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。