Increased energy demand from anabolic-catabolic processes drives β-lactam antibiotic lethality

合成代谢-分解代谢过程的能量需求增加导致 β-内酰胺类抗生素致死率

阅读:5
作者:Michael A Lobritz, Ian W Andrews, Dana Braff, Caroline B M Porter, Arnaud Gutierrez, Yoshikazu Furuta, Louis B G Cortes, Thomas Ferrante, Sarah C Bening, Felix Wong, Charley Gruber, Christopher W Bakerlee, Guillaume Lambert, Graham C Walker, Daniel J Dwyer, James J Collins0

Abstract

β-Lactam antibiotics disrupt the assembly of peptidoglycan (PG) within the bacterial cell wall by inhibiting the enzymatic activity of penicillin-binding proteins (PBPs). It was recently shown that β-lactam treatment initializes a futile cycle of PG synthesis and degradation, highlighting major gaps in our understanding of the lethal effects of PBP inhibition by β-lactam antibiotics. Here, we assess the downstream metabolic consequences of treatment of Escherichia coli with the β-lactam mecillinam and show that lethality from PBP2 inhibition is a specific consequence of toxic metabolic shifts induced by energy demand from multiple catabolic and anabolic processes, including accelerated protein synthesis downstream of PG futile cycling. Resource allocation into these processes is coincident with alterations in ATP synthesis and utilization, as well as a broadly dysregulated cellular redox environment. These results indicate that the disruption of normal anabolic-catabolic homeostasis by PBP inhibition is an essential factor for β-lactam antibiotic lethality.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。