Cerebrospinal fluid affects phenotype and functions of myeloid dendritic cells

脑脊液影响髓系树突状细胞的表型和功能

阅读:11
作者:M Pashenkov, M Söderström, Y-M Huang, H Link

Abstract

Myeloid (CD11c+) dendritic cells (DC) are present in cerebrospinal fluid (CSF), as well as in the meninges and choroid plexus. Functional studies of these DC are hindered or impossible. To obviate this problem, we investigated the effects of CSF supernatants from patients with non-inflammatory neurological diseases (NIND), multiple sclerosis (MS), bacterial meningitis (BM) and Lyme meningoencephalitis (LM) on immature monocyte-derived DC (moDC) from healthy donors. CSF supernatants caused maturation of moDC (MS > LM > NIND > BM), as reflected by a decrease in CD1a, and an increase in HLA-DR, CD80 and CD86 expression. The maturation effect of MS CSF and LM CSF could be blocked by anti-TNF-alpha MoAb or recombinant human IL-10. moDC cultured with BM CSF either remained immature or turned into CD14+ macrophage-like cells and were relatively inefficient at inducing T cell responses in vitro. In contrast, moDC cultured with LM CSF induced strong Th1 responses. Both BM CSF and LM CSF contained IFN-gamma, a cytokine that augments IL-12 production by moDC and hence should confer an ability to induce a Th1 response. However, BM CSF also contained high levels of IL-10, which could antagonize the effects of IFN-gamma on moDC. moDC cultured with MS CSF induced a higher production of IFN-gamma from T cells compared to moDC cultured with NIND CSF or BM CSF. In summary, soluble factors present in the CSF may influence the phenotype and functions of meningeal, choroid plexus and CSF DC which, in turn, may have an impact on the character of intrathecal T cell responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。