MiRNAs and mRNAs Analysis during Abdominal Preadipocyte Differentiation in Chickens

鸡腹部前脂肪细胞分化过程中的 miRNA 和 mRNA 分析

阅读:7
作者:Xiangfei Ma, Junwei Sun, Shuaipeng Zhu, Zhenwei Du, Donghua Li, Wenting Li, Zhuanjian Li, Yadong Tian, Xiangtao Kang, Guirong Sun

Abstract

The excessive deposition of abdominal fat has become an important factor in restricting the production efficiency of chickens, so reducing abdominal fat deposition is important for improving growth rate. It has been proven that miRNAs play an important role in regulating many physiological processes of organisms. In this study, we constructed a model of adipogenesis by isolating preadipocytes (Ab-Pre) derived from abdominal adipose tissue and differentiated adipocytes (Ab-Ad) in vitro. Deep sequencing of miRNAs and mRNAs expressed in Ab-Pre and Ab-Ad groups was conducted to explore the effect of miRNAs and mRNAs on fat deposition. We identified 80 differentially expressed miRNAs (DEMs) candidates, 58 of which were up-regulated and 22 down-regulated. Furthermore, six miRNAs and six mRNAs were verified by qRT-PCR, and the results showed that the expression of the DEMs and differentially expressed genes (DEGs) in the two groups was consistent with our sequencing results. When target genes of miRNA were combined with mRNA transcriptome data, a total of 891 intersection genes were obtained, we predicted the signal pathways of cross genes enrichment to the MAPK signal pathway, insulin signal pathway, fatty acid metabolism, and ECM-receptor interaction. Meanwhile, we constructed miRNA and negatively correlated mRNA target networks, including 12 miRNA-mRNAs pairs, which showed a strong association with the abdominal adipocyte differentiation (miR-214-ACSBG2, NFKB2, CAMK2A, ACLY, CCND3, PLK3, ITGB2; miR-148a-5p-ROCK2; miR-10a-5p-ELOVL5; miR-146b-5p-LAMA4; miR-6615-5p-FLNB; miR-1774-COL6A1). Overall, these findings provide a background for further research on lipid metabolism. Thus, we can better understand the molecular genetic mechanism of chicken abdominal fat deposition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。