Ruxolitinib Delays Nucleus Pulposus Cell Senescence in Rat Intervertebral Discs

鲁索替尼延缓大鼠椎间盘髓核细胞衰老

阅读:2
作者:Honggang Hao ,Weidong Liang ,Shuwen Zhang ,Xiaoyu Cai ,Abulizi Yakefu ,Shutao Gao ,Chuanhui Xun ,Tao Xu ,Rui Cao ,Weibin Sheng

Background

Intervertebral disc degeneration involves aging and senescence of nucleus pulposus cells (NPCs), and JAK/STAT signaling may contribute to this process. The

Conclusions

NPC senescence is characterized by low cell proliferation, a high apoptosis ratio, cell cycle arrest, and generation of senescence-associated secretory phenotypes. NPC senescence can be delayed by inhibiting JAK2/STAT3 signaling using ruxolitinib.

Methods

Control (third passage), Senescence (sixth passage), JAK inhibitor (ruxolitinib-treated), siRNA-NC (control siRNA-treated), and siRNA-JAK2 (JAK2-targeting siRNA-treated) groups of rat NPCs were established. Cell senescence ratios were determined by β-galactosidase staining and Edu staining was conducted to assess cell proliferation. Cell cycle and apoptosis were analyzed by flow cytometry and Aggrecan and Col II expression detected by immunofluorescence staining. Levels of IL-1β, IL-6, TNF-α, MMP-3, and MMP-13 were detected by ELISA, and p16, p21, p53, p-p53, JAK2, STAT3, p-JAK2, p-STAT3, ADAMTS4, and ADAMTS5 levels were examined by western blot.

Results

More cell senescence was detected by β-galactosidase staining in the Senescence group than in the Control group, while cell proliferation was lower, apoptosis ratio higher, and the percentage of NPCs in G0/G1 phase higher. Levels of senescence-related proteins, including p16, p21, p53, and p-p53, were higher in the Senescence group than the Control group, as were those of IL-1β, IL-6, TNF-α, MMP-3, MMP-13, ADAMTS4, and ADAMTS5. Further, Aggrecan and Col II levels were lower in the Senescence group, while those of JAK2 and STAT3 (JAK2/STAT3 signaling pathway) were higher. Ruxolitinib reversed the changes described above to varying degrees, and the results were supported by those of experiments involving targeted silencing of JAK2. Conclusions: NPC senescence is characterized by low cell proliferation, a high apoptosis ratio, cell cycle arrest, and generation of senescence-associated secretory phenotypes. NPC senescence can be delayed by inhibiting JAK2/STAT3 signaling using ruxolitinib.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。