Bio-Inspired Highly Brilliant Structural Colors and Derived Photonic Superstructures for Information Encryption and Fluorescence Enhancement

受生物启发的高度明亮的结构颜色和衍生的光子超结构,用于信息加密和荧光增强

阅读:6
作者:Xiaoru Liu, Junfu Liu, Boru Wei, Dongpeng Yang, Li Luo, Dekun Ma, Shaoming Huang

Abstract

Inspired by the brilliant and tunable structural colors based on the large refractive index contrast (Δn) and non-close-packing structures of chameleon skins, ZnS-silica photonic crystals (PCs) with highly saturated and adjustable colors are fabricated. Due to the large Δn and non-close-packing structure, ZnS-silica PCs show 1) intense reflectance (maximal: 90%), wide photonic bandgaps, and large peak areas, 2.6-7.6, 1.6, and 4.0 times higher than those of silica PCs, respectively; 2) tunable colors by simply adjusting the volume fraction of particles with the same size, more convenient than the conventional way of altering particle sizes; and 3) a relatively low threshold of PC's thickness (57 µm) possessing maximal reflectance compared to that (>200 µm) of the silica PCs. Benefiting from the core-shell structure of the particles, various derived photonic superstructures are fabricated by co-assembling ZnS-silica and silica particles into PCs or by selectively etching silica or ZnS of ZnS-silica/silica and ZnS-silica PCs. A new information encryption technique is developed based on the unique reversible "disorder-order" switch of water-responsive photonic superstructures. Additionally, ZnS-silica PCs are ideal candidates for enhancing fluorescence (approximately tenfold), approximately six times higher than that of silica PC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。