Oligodendrogenesis and myelination tracing in a CRISPR/Cas9-engineered brain microphysiological system

CRISPR/Cas9 工程化大脑微生理系统中的少突胶质细胞发生和髓鞘形成追踪

阅读:6
作者:July Carolina Romero, Cynthia Berlinicke, Sharon Chow, Yukan Duan, Yifei Wang, Xitiz Chamling, Lena Smirnova

Discussion

This work demonstrates an efficient method for generating hiPSC KI lines and the description of a new 3D model to study OL differentiation, migration, and maturation both during in vitro neurodevelopment as well as in response to environmental chemicals or disease-associated stressors.

Methods

Here, we take advantage of CRISPR/Cas9 technology to generate a hiPSC line in which proteolipid protein 1 (PLP1), an OLs marker, is tagged with super-fold GFP (sfGFP). While generating the PLP1-sfGFP reporter, we used reverse transfection and obtained higher Knock-In (KI) efficiency compared to forward transfection (61-72 vs. 46%).

Results

After validation of the KI and quality control of the PLP1-sfGFP line, selected clones were differentiated into bMPS, and the fidelity, specificity, and function of the tagged PLP protein were verified in this model. We tracked different stages of oligodendrogenesis in the verified lines based on PLP1-sfGFP+ cells' morphology, and the presence of PLP1-sfGFP surrounding axons during bMPS' differentiation. Finally, we challenged the bMPS with cuprizone and quantified changes in both the percentage of PLP1-sfGFP expressing cells and the intensity of GFP expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。