Bispecific antibodies: A guide to model informed drug discovery and development

双特异性抗体:模型知情药物发现和开发的指南

阅读:2
作者:Irina Kareva, Anup Zutshi, Pawan Gupta, Senthil Kabilan

Abstract

Affinity (KD) optimization of monoclonal antibodies is one of the factors that impacts the stoichiometric binding and the corresponding efficacy of a drug. This impacts the dose and the dosing regimen, making the optimum KD a critical component of drug discovery and development. Its importance is further enhanced for bispecific antibodies, where affinity of the drug needs to be optimized with respect to two targets. Mathematical modeling can have critical impact on lead compound optimization. Here we build on previous work of using mathematical models to facilitate lead compound selection, expanding analysis from two membrane bound targets to soluble targets as well. Our analysis reveals the importance of three factors for lead compound optimization: drug affinity to both targets, target turnover rates, and target distribution throughout the body. We describe a method that leverages this information to help make early stage decisions on whether to optimize affinity, and if so, which arm of the bispecific should be optimized. We apply the proposed approach to a variety of scenarios and illustrate the ability to make improved decisions in each case. We integrate results to develop a bispecific antibody KD optimization guide that can be used to improve resource allocation for lead compound selection, accelerating advancement of better compounds. We conclude with a discussion of possible ways to assess the necessary levels of target engagement for affecting disease as part of an integrative approach for model-informed drug discovery and development.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。