Bispecific antibodies: A guide to model informed drug discovery and development

双特异性抗体:模型知情药物发现和开发的指南

阅读:6
作者:Irina Kareva, Anup Zutshi, Pawan Gupta, Senthil Kabilan

Abstract

Affinity (KD) optimization of monoclonal antibodies is one of the factors that impacts the stoichiometric binding and the corresponding efficacy of a drug. This impacts the dose and the dosing regimen, making the optimum KD a critical component of drug discovery and development. Its importance is further enhanced for bispecific antibodies, where affinity of the drug needs to be optimized with respect to two targets. Mathematical modeling can have critical impact on lead compound optimization. Here we build on previous work of using mathematical models to facilitate lead compound selection, expanding analysis from two membrane bound targets to soluble targets as well. Our analysis reveals the importance of three factors for lead compound optimization: drug affinity to both targets, target turnover rates, and target distribution throughout the body. We describe a method that leverages this information to help make early stage decisions on whether to optimize affinity, and if so, which arm of the bispecific should be optimized. We apply the proposed approach to a variety of scenarios and illustrate the ability to make improved decisions in each case. We integrate results to develop a bispecific antibody KD optimization guide that can be used to improve resource allocation for lead compound selection, accelerating advancement of better compounds. We conclude with a discussion of possible ways to assess the necessary levels of target engagement for affecting disease as part of an integrative approach for model-informed drug discovery and development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。