Adipose-derived stem cell exosomes attenuates myofibroblast transformation via inhibiting autophagy through TGF-β/Smad2 axis in oral submucosal fibrosis

脂肪干细胞外泌体通过抑制口腔黏膜下纤维化中 TGF-β/Smad2 轴的自噬来减弱肌成纤维细胞转化

阅读:10
作者:Jinhao Xu #, Yujing Wang #, Zifei Shao, Yuxi Zhou, Xin Bin, Lian Liu, Weiman Huang, Xidi Wang, Yanjia Hu, Kun Li

Abstract

Oral submucous fibrosis (OSF) is a precancerous condition that poses substantial health risks. OSF is mainly caused by betel nut chewing behavior, but its pathogenesis is still unclear and there is no effective treatment strategy. The transformation of fibroblasts to myofibroblast is the key pathological change in the development of OSF. We isolated fibroblasts from human oral mucosa and induced them into myofibroblasts by arecoline, during which autophagy was significantly activated. Here, we found that adipose-derived stem cell exosomes (ADSCs-EXO) could inhibit autophagy to regulate myofibroblast phenotype, and transcriptome sequencing analysis suggested that this process is closely related to the TGF-β pathway. The interplay between autophagy and TGF-β pathway was examined through modulation the two with autophagy activators and inhibitors, TGF-β receptor activators and inhibitors. Results showed that in vitro, the TGF-β/Smad2 pathway augmented autophagy and promoted myofibroblast transformation. The transcriptome information of ADSCs-EXO showed that it contains a large number of miRNAs. Among them, miR-125a-5p could target Smad2. In vivo, injection of ADSCs-EXO alleviated OSF in mice, during which TGF-β and autophagy signals were inhibited. We suggested that ADSCs-EXO could inhibit myofibroblast transformation via inhibiting autophagy through TGF-β/Smad2 axis in OSF, providing new insights for autophagy-based intervention strategies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。