Drug Design, Synthesis and Biological Evaluation of Heterocyclic Molecules as Anti-Inflammatory Agents

杂环分子作为抗炎剂的药物设计、合成及生物学评价

阅读:6
作者:Jignasa Savjani, Bhavesh Variya, Snehal Patel, Suja Mulamkattil, Harsh Amin, Shital Butani, Ahmed Allam, Jamaan Ajarem, Harsh Shah

Abstract

Non-steroidal anti-inflammatory drugs (NSAIDs) are generally utilized for numerous inflammatory ailments. The long-term utilization of NSAIDs prompts adverse reactions such as gastrointestinal ulceration, renal dysfunction and hepatotoxicity; however, selective COX-2 inhibitors prevent these adverse events. Various scientific approaches have been employed to identify safer COX-2 inhibitors, as in any case, a large portion of particular COX-2 inhibitors have been retracted from the market because of severe cardiovascular events. This study aimed to develop and synthesize a novel series of indomethacin analogues with potential anti-inflammatory properties and fewer side effects, wherein carboxylic acid moiety was substituted using DCC/DMAP coupling. This study incorporates the docking of various indomethacin analogues to detect the binding interactions with COX-2 protein (PDB ID: 3NT1). MD simulation was performed to measure the stability and flexibility of ligand-protein interactions at the atomic level, for which the top-scoring ligand-protein complex was selected. These compounds were evaluated in vitro for COX enzymes inhibition. Likewise, selected compounds were screened in vivo for anti-inflammatory potential using the carrageenan-induced rat paw oedema method and their ulcerogenic potential. The acute toxicity of compounds was also predicted using in silico tools. Most of the compounds exhibited the potent inhibition of both COX enzymes; however, 3e and 3c showed the most potent COX-2 inhibition having IC50 0.34 µM and 1.39 µM, respectively. These compounds also demonstrated potent anti-inflammatory potential without ulcerogenic liability. The biological evaluation revealed that the compound substituted with 4-nitrophenyl was most active.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。