Regulatory effects of miR-28 on osteogenic differentiation of human bone marrow mesenchymal stem cells

miR-28对人骨髓间充质干细胞成骨分化的调控作用

阅读:4
作者:Min Wang, Tianming Dai, Qingqi Meng, Wen Wang, Siming Li

Abstract

We aimed to assess the regulatory effects of miR-28 on the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMMSCs). HBMMSCs isolated, cultured and induced (at P3) to undergo osteogenic induction. The expressions of miRNAs were detected by gene microarray, and differentially expressed miRNAs in hBMMSCs compared with induced cells were obtained by significance analysis of microarrays. The microarray findings were confirmed by RT-PCR. TargetScan showed that signal transducer and activator of transcription 1 (STAT1) was the downstream target gene of miR-28. The relationship between miR-28 and STAT1 was validated using dual-luciferase reporter gene assay. HBMMSCs were transfected with miR-28 mimics and STAT1 siRNA, respectively. Samples were collected on day 10 after osteogenic differentiation, and the alkaline phosphatase (AKP) activity, Runt-related transcription factor 2 (RUNX2, a key regulator of osteogenic differentiation) and STAT1 expressions were determined using kits, PCR and Western blotting, respectively. Cell proliferation and migration were detected through CCK-8 and Transwell assays, respectively. During the osteogenic differentiation of hBMMSCs, the expression level of miR-28 increased. MiR-28 specifically bound the 3'-untranslated region (3'UTR) of STAT1 mRNA. It inhibited STAT1 expression in a targeted manner during osteogenic differentiation. Interference with STAT1 partially mimicked the regulatory effects of miR-28 overexpression on the osteogenic differentiation of hBMMSCs. Interference with STAT1 or overexpression of miR-28 did not affect proliferation or migration. MiR-28 has gradually increased expression during the osteogenic differentiation of hBMMSCs, which can directly bind STAT1 3'UTR and inhibit its expression, thereby up-regulating AKP and RUNX2, and promoting osteogenic differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。