Mitigation of Cellular and Bacterial Adhesion on Laser Modified Poly (2-Methacryloyloxyethyl Phosphorylcholine)/Polydimethylsiloxane Surface

激光改性聚(2-甲基丙烯酰氧乙基磷酰胆碱)/聚二甲基硅氧烷表面细胞和细菌粘附的减轻

阅读:5
作者:Simona Nistorescu, Madalina Icriverzi, Paula Florian, Anca Bonciu, Valentina Marascu, Nicoleta Dumitrescu, Gratiela Gradisteanu Pircalabioru, Laurentiu Rusen, Alexandra Mocanu, Anca Roseanu, Anisoara Cimpean, Florin Grama, Valentina Dinca, Daniel A Cristian

Abstract

Nowadays, using polymers with specific characteristics to coat the surface of a device to prevent undesired biological responses can represent an optimal strategy for developing new and more efficient implants for biomedical applications. Among them, zwitterionic phosphorylcholine-based polymers are of interest due to their properties to resist cell and bacterial adhesion. In this work, the Matrix-Assisted Laser Evaporation (MAPLE) technique was investigated as a new approach for functionalising Polydimethylsiloxane (PDMS) surfaces with zwitterionic poly(2-Methacryloyloxyethyl-Phosphorylcholine) (pMPC) polymer. Evaluation of the physical-chemical properties of the new coatings revealed that the technique proposed has the advantage of achieving uniform and homogeneous stable moderate hydrophilic pMPC thin layers onto hydrophobic PDMS without any pre-treatment, therefore avoiding the major disadvantage of hydrophobicity recovery. The capacity of modified PDMS surfaces to reduce bacterial adhesion and biofilm formation was tested for Gram-positive bacteria, Staphylococcus aureus (S. aureus), and Gram-negative bacteria, Escherichia coli (E. coli). Cell adhesion, proliferation and morphology of human THP-1 differentiated macrophages and human normal CCD-1070Sk fibroblasts on the different surfaces were also assessed. Biological in vitro investigation revealed a significantly reduced adherence on PDMS-pMPC of both E. coli (from 29 × 10 6 to 3 × 102 CFU/mL) and S. aureus (from 29 × 106 to 3 × 102 CFU/mL) bacterial strains. Additionally, coated surfaces induced a significant inhibition of biofilm formation, an effect observed mainly for E. coli. Moreover, the pMPC coatings improved the capacity of PDMS to reduce the adhesion and proliferation of human macrophages by 50% and of human fibroblast by 40% compared to unmodified scaffold, circumventing undesired cell responses such as inflammation and fibrosis. All these highlighted the potential for the new PDMS-pMPC interfaces obtained by MAPLE to be used in the biomedical field to design new PDMS-based implants exhibiting long-term hydrophilic profile stability and better mitigating foreign body response and microbial infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。