Urinary Metabolomics for the Prediction of Radiation-Induced Cardiac Dysfunction

尿液代谢组学用于预测放射性心脏功能障碍

阅读:5
作者:Yaoxiang Li, Shivani Bansal, Vijayalakshmi Sridharan, Sunil Bansal, Meth M Jayatilake, Jose A Fernández, John H Griffin, Marjan Boerma, Amrita K Cheema

Abstract

Survivors of acute radiation exposure are likely to experience delayed effects that manifest as injury in late-responding organs such as the heart. Non-invasive indicators of radiation-induced cardiac dysfunction are important in the prediction and diagnosis of this disease. In this study, we aimed to identify urinary metabolites indicative of radiation-induced cardiac damage by analyzing previously collected urine samples from a published study. The samples were collected from male and female wild-type (C57BL/6N) and transgenic mice constitutively expressing activated protein C (APCHi), a circulating protein with potential cardiac protective properties, who were exposed to 9.5 Gy of γ-rays. We utilized LC-MS-based metabolomics and lipidomics for the analysis of urine samples collected at 24 h, 1 week, 1 month, 3 months, and 6 months post-irradiation. Radiation caused perturbations in the TCA cycle, glycosphingolipid metabolism, fatty acid oxidation, purine catabolism, and amino acid metabolites, which were more prominent in the wild-type (WT) mice compared to the APCHi mice, suggesting a differential response between the two genotypes. After combining the genotypes and sexes, we identified a multi-analyte urinary panel at early post-irradiation time points that predicted heart dysfunction using a logistic regression model with a discovery validation study design. These studies demonstrate the utility of a molecular phenotyping approach to develop a urinary biomarker panel predictive of the delayed effects of ionizing radia-tion. It is important to note that no live mice were used or assessed in this study; instead, we focused solely on analyzing previously collected urine samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。