HDAC6 decreases H4K16 and α-tubulin acetylation during porcine oocyte maturation

HDAC6 降低猪卵母细胞成熟过程中的 H4K16 和 α-微管蛋白乙酰化

阅读:8
作者:Sheng Zhang, Liyan Sui, Xiangjie Kong, Rong Huang, Ziyi Li

Abstract

HDAC6 is an essential factor in mouse oocyte maturation. However, the roles of HDAC6 in porcine oocyte maturation are still unclear. Therefore, we analyzed the roles of HDAC6 in porcine oocyte maturation by treatment with Tubastatin A (TubA) which is an HDAC6 inhibitor. Our results showed that treatment with 10 μg/ml TubA significantly decreased the rate of porcine oocyte maturation, but it did not influence the rate of germinal vesicle breakdown (GVBD). Then, we found that TubA treatment disrupted spindle organization by increasing the α-tubulin acetylation level during porcine oocyte maturation. Moreover, TubA treatment significantly increased H4K16 acetylation, which may compromise kinetochore and microtubule (K-MT) attachment during meiosis in porcine oocytes. We also analyzed the effects of TubA on meiosis-related (H3T3pho and H3S10pho) and transcription-related histone modifications (H3K4me3, H3K9me3 and H3K4ac) during porcine oocyte maturation. The results showed that TubA treatment increased H3S10pho and H3K4ac levels, but no influence was seen in H3T3pho, H3K4me3 and H3K9me3 levels in porcine oocytes. TubA treated oocytes also showed a compromised ability to develop after parthenogenetic activation. Finally, we found that HDAC6 exhibited higher mRNA levels and lower DNA methylation levels in porcine oocytes than it did in porcine embryonic fibroblasts (PEFs). These results indicate that the low level of DNA methylation in HDAC6 promoter ensures high expression. HDAC6 regulates the deacetylation of α-tubulin and H4K16, which promotes correct spindle organization and meiotic apparatus assembly during porcine oocyte maturation. This study illustrates a new pathway by which HDAC6 modulates mammalian oocyte maturation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。