The targetable nanoparticle BAF312@cRGD-CaP-NP represses tumor growth and angiogenesis by downregulating the S1PR1/P-STAT3/VEGFA axis in triple-negative breast cancer

可靶向纳米粒子 BAF312@cRGD-CaP-NP 通过下调三阴性乳腺癌中的 S1PR1/P-STAT3/VEGFA 轴来抑制肿瘤生长和血管生成

阅读:6
作者:Ke Gong #, Juyang Jiao #, Chaoqun Xu, Yang Dong, Dongxiao Li, Di He, De Zhao, Jian Yu, Ying Sun, Wei Zhang, Min Bai, Yourong Duan

Background

Overexpressed vascular endothelial growth factor A (VEGFA) and phosphorylated signal transducer and activator of transcription 3 (P-STAT3) cause unrestricted tumor growth and angiogenesis of breast cancer (BRCA), especially triple-negative breast cancer (TNBC). Hence, novel treatment strategy is urgently needed.

Conclusions

Our data suggest a potent role for BAF312@cRGD-CaP-NPs in treating BRCA, especially TNBC by downregulating the S1PR1/P-STAT3/VEGFA axis.

Results

We found sphingosine 1 phosphate receptor 1 (S1PR1) can regulate P-STAT3/VEGFA. Database showed S1PR1 is highly expressed in BRCA and causes the poor prognosis of patients. Interrupting the expression of S1PR1 could inhibit the growth of human breast cancer cells (MCF-7 and MDA-MB-231) and suppress the angiogenesis of human umbilical vein endothelial cells (HUVECs) via affecting S1PR1/P-STAT3/VEGFA axis. Siponimod (BAF312) is a selective antagonist of S1PR1, which inhibits tumor growth and angiogenesis in vitro by downregulating the S1PR1/P-STAT3/VEGFA axis. We prepared pH-sensitive and tumor-targeted shell-core structure nanoparticles, in which hydrophilic PEG2000 modified with the cyclic Arg-Gly-Asp (cRGD) formed the shell, hydrophobic DSPE formed the core, and CaP (calcium and phosphate ions) was adsorbed onto the shell; the nanoparticles were used to deliver BAF312 (BAF312@cRGD-CaP-NPs). The size and potential of the nanoparticles were 109.9 ± 1.002 nm and - 10.6 ± 0.056 mV. The incorporation efficacy for BAF312 was 81.4%. Results confirmed BAF312@cRGD-CaP-NP could dramatically inhibit tumor growth and angiogenesis in vitro and in MDA-MB-231 tumor-bearing mice via downregulating the S1PR1/P-STAT3/VEGFA axis. Conclusions: Our data suggest a potent role for BAF312@cRGD-CaP-NPs in treating BRCA, especially TNBC by downregulating the S1PR1/P-STAT3/VEGFA axis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。