Activated DRP1 promotes mitochondrial fission and induces glycolysis in ATII cells under hyperoxia

高氧条件下,激活的 DRP1 促进线粒体裂变并诱导 ATII 细胞糖酵解

阅读:8
作者:Tong Sun #, Haiyang Yu #, Dingning Zhang, Danni Li #, Jianhua Fu #

Methods

Neonatal rats in this study were divided into model (FIO2:85%) and control (FIO2: 21%) groups. Lung tissues were extracted at 3, 7, 10 and 14 postnatal days and then conducted HE staining for histopathological observation. We assessed the expression of mitochondria dynamic associated proteins and glycolysis associated enzymes in lung tissues, primary ATII cells and RLE-6TN cells. Double immunofluorescence staining was used to confirm the co-localization of DRP1 and ATII cells. Real-time analyses of ECAR and OCR were performed with primary ATII cells using Seahorse XF96. ATP concentration was measured using an ATP kit. We treated RLE-6TN cells at 85% hyperoxia for 48 h with mitochondrial fission inhibitor Mdivi-1 to verify the role of DRP1 in regulating glucose metabolic reprogramming. Findings: We found that hyperoxia causes ATII cells' mitochondrial morphological change. The expression of DRP1 and p-DRP1 increased in lung tissue and primary ATII cells of neonatal rats exposed to hyperoxia. Glycolysis related enzymes including PFKM, HK2, and LDHA were also increased. Hyperoxia inhibited ATP production in ATII cells. In RLE-6TN cells, we verified that the administration of Mdivi-1 could alleviate the enhancement of aerobic glycolysis and fragmentation of mitochondria caused by hyperoxia. Interpretations: Hyperoxia exposure leads to increased mitochondrial fission in ATII cells and mediates the reprogramming of glucose metabolism via the DRP1 signaling pathway. Inhibiting the activation of DRP1 signaling pathway may be a promising therapeutic target for BPD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。