Characterization of a bifidobacterial system that utilizes galacto-oligosaccharides

利用低聚半乳糖的双歧杆菌系统的特征

阅读:5
作者:Akira Shigehisa, Hidetsugu Sotoya, Takashi Sato, Taeko Hara, Hoshitaka Matsumoto, Takahiro Matsuki

Abstract

The galacto-oligosaccharide (GOS) OLIGOMATE 55N (Yakult) is a mixture of oligosaccharides, the main component of which is 4'-galactosyllactose (4'-GL). Numerous reports have shown that GOSs are non-digestible, reach the colon and selectively stimulate the growth of bifidobacteria. The product has been used as a food ingredient and its applications have expanded rapidly. However, the bifidobacterial glycoside hydrolases and transporters responsible for utilizing GOSs have not been characterized sufficiently. In this study, we aimed to identify and characterize genes responsible for metabolizing 4'-GL in Bifidobacterium breve strain Yakult. We attempted to identify B. breve Yakult genes induced by 4'-GL using transcriptional profiling during growth in basal medium containing 4'-GL with a custom microarray. We found that BbrY_0420, which encodes solute-binding protein (SBP), and BbrY_0422, which encodes β-galactosidase, were markedly upregulated relative to that during growth in basal medium containing lactose. Investigation of the substrate specificity of recombinant BbrY_0420 protein using surface plasmon resonance showed that BbrY_0420 protein bound to 4'-GL, but not to 3'-GL and 6'-GL, structural isomers of 4'-GL. Additionally, BbrY_0420 had a strong affinity for 4-galactobiose (4-GB), suggesting that this SBP recognized the non-reducing terminal structure of 4'-GL. Incubation of purified recombinant BbrY_0422 protein with 4'-GL, 3'-GL, 6'-GL and 4-GB revealed that the protein efficiently hydrolysed 4'-GL and 4-GB, but did not digest 3'-GL, 6'-GL or lactose, suggesting that BbrY_0422 digested the bond within Gal1,4-β-Gal. Thus, BbrY_0420 (SBP) and BbrY_0422 (β-galactosidase) had identical, strict substrate specificity, suggesting that they were coupled by co-induction to facilitate the transportation and hydrolysis of 4'-GL.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。